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A LOGIC FOR THE ANALYSIS OF CRYPTOGRAPHIC PROTO

INFRODUCTION

In this report, we present a free epistemic logic with separate means for explicitly repre-
senting both propositional knowledge and knowledge of individuals. The logic has been designed
primarily for the analysis of cryptographic protocols, but it is not necessarily limited to this appli-
cation. Thus, the logic has distinct mechanisms for representing—e.g., knowing that k is Saul’s
crypto-key vs knowing k in the sense of being able to recognize or produce it. These representa-
tions are accomplished by means of a standard knowledge operator and a knowledge predicate re-
spectively. The logic presented here is the result of a significant revision of the logic given in
(Syverson, 1990). The current version corrects certain errors and omissions in the original ac-
‘count. We also argue briefly that the introduction of a knowledge predicate is more than mere
novelty; it facilitates a genuine and valuable expansion of expressive power.

In “The Use of Logic in the Analysis of Cryptographic Protocols” (submitted for publica-
tion), we argue that it is valuable for a crypto-protocol logic to have an independently motivated
semantics, one that explicitly incorporates the cryptographic features of the logic. In addition to
other advantages, if the logic is shown to be sound and complete with respect to the semantics,
then we have strong assurance that the logic captures all and only the valid reasoning expressible
in the formal language. One of the primary goals of this report is to present such metalogical re-
sults. Before proving these, however, we set out the language, semantics, and logic.

THE LANGUAGE

The language contains a denumerable number of names of words: sy, sy, 83, ... Each word
should be thought of as a string of symbols from some finite alphabet, e.g., 2 key. However, since
we need not depict the structure of words in our language, they are represented atomically. The
language also contains equality and two functions taking pairs of words to words.] ex,y) =1z
should be taken to mean that z is the result of encrypting y with key x. d(x, y) = z should be taken
to mean that z is the result of decrypting y using key x. (x, y, z, ... are variables ranging over arbi-
trary words.) Our language also contains denumerably many predicate constants, each of finite
arity and taking tuples of word names as arguments: Py, Py, Ps, ... Of these we call particular at-
tention to a set of unary epistemic predicate constants: Cy, ..., Cp. Intuitively Ci(x) should be tak-
en to mean that i knows x, i.., i can recognize or produce the character string named by x. Ifi is
able to decrypt a message he receives that has been encrypted with key x, this serves as evidence

Manuscript approved October 2, 1990,

1. To be precise we should say that the language contains the identity symbol and two function symbols that represent equality and
two functions respectively, but we adopt common use-mention confusions where it is harmless.
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P.F. SYVERSON

that Cjx is true; he must have known the key since he was able to use it. (It is assumed that we
are talking about symmetric encryption here, i.e., the encryption and decryption keys are the
same.)

The language is first order with quantification being over words. The basic (open) sen-
tences of the language are expressions of the form P(xy, ..., X;) or Py(s;, ... » 8 and equations.
Closed sentences are those containing no free variables. Sentences (open ar claseé} may be as-
sembled into {finite) complex sentences according to ordinary recursive formation rules using the
usual connectives: —, A, v, and —. The only remaining feature of the language is a finite set of
propositional knowledge operators: 8y, ..., S,. These are standard cpx stemic operators in the style
of Hintkka (1962) Intuitively S;0 should be taken to mean that 1 knows the proposition ex-
pressed by (p (¢ 1s a variable ranging over arbitrary sentences.) S;¢ is a sentence, provided that
¢ is a sentence. Thus these operators may be iterated, although we will not have need todo so in
this report. Note the difference between C; and §;. C; is a predicate; it applies to words (individ-
uals}. S;is an operator; it applies to sentences.

SEMANTICS

The semantics we adopt is a slight modification of the standard Hintikka style possible
world semantics for epistemic logics. Before setting things out formaily we will give an intuitive
picture. First we have a set of possible worlds. These may be thought of as all the different ways
the world may be. On this set there is an accessibility relation between worids for each individual
i. If world w’ is accessible from w for a given individual, then that individual in w cannot distin-
guish the two worlds given his current state of knowledge. Thus, suppose there are two werlds
that are accessible to each other for i. In one of these worlds it is raining, and in the other it is not.
In this case, 1 does not know whether or not it is raining (relative to either world). If a sentence @
is true in all the worlds accessible for 1 from some world wy, then we can say that i knows ¢ in
that world. N.B. @ may actually be false! This is because we have said nothing about how w,
compares 10 the actual world. While ¢ may be false in the actual world, if itis tuc in wyand in
all worlds accessible from wy, for 1, then i knows @ in w;. Now, we are usually worried about
what someone knows in the actual world. So, “1 knows ¢.” (simplicirer) should be taken to mean
that 1 knows @ in the actual world.

The above corresponds to our characterization of propositional knowledge by means of
the S; operators. For the knowledge characterized by the C; predicates, we maintain the same se-
mantic structure of worlds and accessibility relations; we simply add to it. In quantified modal
logic one decides whether, for example, P(x;, ..., Xy) is true at a world by seeing if the k-tuple of
values assigned to x; through x, respectively at that world is in the set assigned to P at that world.
The same criterion applies to sentences formed with the C; predicates. This is somewhat unusual;
except for identity, predicates usually receive their interpretation extralogically. The interpreta-
tion of C; is intimately tied to the semantic structure itself. Cyx is true at a world w, whenever x is
assigned a value at w, and it is assigned the same value at all worlds accessible from w,, for i.

2. The choice of symbols for knowledge derives from the French words ‘connaitre” and ‘saveir’. For example, in French, you
connais & person and you sais that it’s raining. In English, which does not make the distinction, both of these mean to know.

2
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Since these predicates are unusual, we shall give a little explanation of their semantic interpreta-
tion.

The possible worlds represent the different ways someone thinks reality might be. If
world w is accessible from world w for some subject, e.g. Scott, then at world w, he cannot tell
them apart. From the perspective of world w, Scott finds both w and w” equally possible ways
things might be. Now, suppose some word s is present at one of these worlds but not the other.
(What ‘present’ means will be clearer once the model theory is spelled out below.) Then Scott
cannot tell the difference between a world where s is present and one where it is not. So, he must
not really be aware of the word, know the word, if he can’t tell whether it’s there or not. Under
these circumstances we would not want to say that he can recognize or reproduce the word. Thus
it should indeed turn out that Cg.(s) is not true at w.

Domains, Terms, and Denotations

There is a potential problem with our semantics. If every term of the language were to de-
note in every world, and if terms always denoted the same word regardless of the world, then ev-
eryone would know all the words in all circumstances—assuming all the words were named in the

1A +h = sl nr tl [y P
language. This is so because all the worlds would have the same words in them, and those words

would be named the same way at each of them. This would render the C predicates trivial and
thus useless. The answer of course is to vary the domain of quantification from world to world.
This will block the validity of Vx C;x as long as there are things in the domatn of quantification of
some world that are not in the dornam of quantification in another.3 Unfortunatcly, this strategy is
not sufficient to entirely solve the problem. For, even with the domains varying, a constant term
will (by definition) denote the same word in all worlds. Thus, any word that is given a name in
our language will be a word that everyone always knows. Somehow we need to have terms that
may not denote in all possible worlds. Fortunately, there is a way to deal directly with nondenot-
ing singular terms.

Free Logic

Ermanno Bencivenga (1986) defines a free logic as “a formal system of quantification the-
ory, with or without identity, which allows for some singular terms in some circumstances to be
thought of as denoting no CXIStlng object, and in which quantifiers are invariably thought of as
having existential import.” 4 Thisis Just what we want, provided that we fill in the details proper-
ly.

In effect, the strategy here is to adopt the proposal given above, namely to vary the domain
of quantification from world to world. All we need do is incorporate the correct interpretation of
terms into this picture. A singular term t denotes at a world just in case it names a member of the
domain of quantification at that world, i.e., 3x (x = t) is true at that world (x is a variable distinct
from t). For ease of expression, we define a predicate expressed by ‘E’ such that

3. Note that this also provides a semantic guarantee that the Barcan Formula is not valid. We will return to this below where jt will
be seen to be a desirable result.

4. op. cit., p. 375.
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E(t) =4¢ 3x (x = t} —where x is a variable distinct from t. In place of the classical quantifier rules,
we have the following.

Universal Instantiation

From Vx ¢ A Et for any term t, where @ is a sentence in the language, and
infer (ﬂ[l’/sﬂ (ﬂf?h’f is the same senfence as @ except th that all free

—————— [ A% S A 500 34 Ty

occurrences of x in ¢ are replaced by t

Universal Generalization

From y — (Et — ¢} where tis a term that does not occur freely in yorin
infer y — Vx ofx/t} any assumption on which y — (Et — @) depends

Intuitively understood, these may help in comprehending what it means for quantification
to always have existential import. We need to spell out formal models and imterpretations to see
exactly how these rules work, and that is what we do now.

Models

A model is a tuple <W, Ry, ..., Ry, D, d, 2> where W is a set of nonempty possible worlds,
Ry, ..., Ry are binary accessibility relations between members of W, and D is a domain of objects
for all possible worlds, d is a function from members of W to subsets of D, thus d{(w) is the do-
main at world w. a is an assignment function, which assigns values to ﬂxpressiﬁns in the language

in the mannar rr“n:lﬂ n!nur Q'l'nr‘n e wnant fo nnr\“r a tn he iindefined samatimmas wa adont the
ARl LAIw AACCLIERIVE Bk e WAL VYL VALIL LD QLU WU BRULLINIILAL DUVLTIGUILLIVD, W U aiv

standard trick of adding a value * to represent being undefined. This aliows us to have an assign-
ment function that is total and yet still gives us a means to say that terms sometimes fail to denote
and sentences sometimes do not have a definite truth value. Note that since an assignment func-
tion does the duty of both an interpretation and a valuation, % can do the duty of both an undefined
truth value and an undefined member of a domain.

althe D r all terms t

a(<ty, ..., t,>) = <alty, .., alty)> where t;, ..., t; are terms {names of words)
(We suppress tuple notation from here on when it is clear what is meant.)

a(f(ty, .., teh) = a{fy (alty, ..., ) = where ty, ..., t; are terms {(names of words)
= a(f) (alty, ..., alty)) and f is the name of a function on words

a(P) is a set of n-tuples of members of D where P is any n-ary predicate letter {n = 1)

Encryption and decryption pose a problem for an assignment function; neither the encryp-
tion nor the decryption key is necessarily unique. For example, in the RSA algorithm any power
of a key is also a key, i.e., something encrypted using a power of the encryption key can be de-
crypted using the usual decryption key, and vice versa. This may also be true of symmetric en-
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cryption schemes. Informally we shall follow the conventional pretense that encryption and
decryption keys are unique whenever such pretense causes no harm.”> Thus, if k is the name of
some key, k''is to be intuitively interpreted as the name of the inverse key corresponding to k. In
order to ensure that all works out properly on the formal level we define the following.

For a given key (term) k,
[k] = (t : a(e(t, ¥)) = a(e(k, y)) for each y € a” (D)}
[k = {t: a(d(t, ek, y))) = a(y) = a(e(k, d(t, ))) for each y € a”}(D)}

ay, is the restriction of a to d(w) on the above type arguments and also satisfying the following.

a(r) if a(t) ed(w)

orif a(t) = a(f(ty, ..., ty)) for some
t1s woos ty S.L (L), ..., alty) ed(w)

orif ay(e(sy, 7)) = a(e(k, t)) for some

$1, 82 S.L. a(s{), a(sp) ed(w) and some

-2y () is 9 k s.t. k" e [k1] and a(k") e d(w)

or if a, (d(s;, sp)) = a(d(k’, 1)) for some
81, $2 S.t. a(8y), a(s) ed(w) and some
K s.t. k" e [k1], atk) e d(w)

L* otherwise

This is not as complicated as it looks. There are four cases under which a term t denotes at
a world w. The first case is when it is simply given. Perhaps t is a public key that everyone
knows, thus it is present at every world. The second case is when t names the same thing as a
function of terms, and each of the arguments of the function denotes at w. The third case is when
e(k, t) is assigned the same value as a word that is an encrypted word at w, and the decryption key
also denotes at w. It is important to note that it is not enough that a(e(k, t)) = a(s) for some s that
denotes at w. s must be an encrypted word in w, not just in D. Intuitively, in order to apply a de-
cryption key to a word in world w, that word must be an encrypted word in w. The fourth case is
similar to the third except that it deals with decrypted words rather than encrypted words.

T if ay,(s) = a(t) and a(s) € d(w)
F

ay(s=1t)is if a(s) # a(t) and a(s), a(t) € d(w)
* otherwise
T  if a(t) € d(w’) for all w’ such that wR,w’

ayw(Cit) is F ifa(t) e d(w)and a(t) ¢ d(w’) for some W’ s.t. WR;w’
* otherwise

5. For convenience, we also restrict ourselves to cryptosystems with two sided inverses. This is not a serious restric-
tion as it covers those cryptosystems that are currently in widest use.



P F SYVERSON

For n-ary predicate letters P, other than equality and C; (fori= 1, ..., k), we have
(T ifafty), ... a(ty) € d(w) and a(ty, .., 1) € a(P)
ay Pty ..y t)) i F if afty), ..., alty) € d(w) and a(ty, ..., tp) € a(P)
* otherwise

For an arbitrary sentence ¢,

IT if ag (@) = T for all w” such that wR,w’

a,(8;0) is F  if a,(¢) is defined for all w” such that wR;w”
[ and ay(¢) =F for some w” such that wR;w’
otherwise
(T if 2, (Q[vx]) = T for all t such that a(t) € d(w)
a,,(Vx @) is iF if a(@{t/x]) = F for some t such that a(t) € d(w)
* otherwise
‘i‘i?he‘l“e {ﬂ[ti‘!‘t ';C' tha carmoe cantar/s Ao M avrand Q‘l’!‘l!‘ 011 oo ArnocTITRANCcac MY W 1y i ara o "){\DA i\.‘.! t
¥Y L \F{l{ Al 1T LIV S delilvileh: &30 \i) \.r‘.&\-‘\ti.ll. LLIGL ALl Liwe Ubivldliviivie o Vi A 2l W L\.‘iJluUw (%) (9

(T ifay(@)=Tanday(y)=T
ay(Q AY)is F  ifag{p)=Fora,(y)=F
i and both a, () and a,, ()} are defined
% otherwise

T ifafe)=Tora,(y)=T

and both a,(p) and a,, () are defined
ifag(@)=Fanda,(w)=F

otherwise

ag Qv yyis

*11

L4

fag{@y=Fora,(y=T
and both a (@) and a, () are defin

s
5
4
S
&
gy rﬂmw"-:aﬂ e,

F ifa(¢y=Tanday(y)=F
* otherwise
T ay(gy=F
ay(—e) is F ifayle)=T
* if ay,(Q) =

KNOWLEDGE REPRESENTATION

Now that the basic linguistic and semantic structures are in place, we can say something
about the mechanisms for knowledge representation. One important question is whether or not
we need the knowledge predicates (C predicates) as primitives at all. Is there not some way that
we can define them in terms of the knowledge operators? OCbvious candidates for defining Cit are

6
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Si(Et) and 3x Si(x =t). Indeed these are the standard ways of representing this type of knowl-
edge. Debate on which of these is more appropriate is forestalled by their equivalence in the
above semantics and is a fortiori precluded once we realize that neither can ever be false. In any
given world they are both either true or undefined. Nonetheless, perhaps this indicates not the in-
dispensability of the knowledge predicates, but the inadequacy of the assignment function.

Perhaps the assignment function makes unnecessary distinctions in the case of the knowl-
edge predicates. The way the assignment function works for the C predicates does seem a little
odd. Recalling the possible worlds explanation of them given above may clarify the reasons for
the assignment of T, but what about the distinction between being assigned F and being unde-
fined? Obviously an atomic sentence that contains a term that fails to denote at a world should
fail to have a truth value at that world. (Recall that ours is a logic of epistemic, not alethic6, mo-
dalities. If ‘Pegasus’ does not denote at a world, it doesn’t mean simply that he does not exist
there; it means that he is not known there.) This explains the conditions under which a(Cjt) is
undefined. As for falsity, from i’s perspective C;t should never be false. How could i think that he
does not know a word (in the C sense)? To think about the word at all he must know what it is.
But, others may be in a position to realize that i does not know a word, and there may be things
that follow logically from the falsity of C;t even if no subject knows it. So, we must be able to as-

sign the value F to C;t. We have already seen that t must denote for Cjt to be assigned a truth val-
ue at all, and if t were to denote in all worlds accessible from w for i, then C;t would clearly be
true. Thus, the only way for Cit to be assigned the value F at a world w is if t denotes at w but
fails to denote at some world accessible from w for i.

This justification still does not ensure the necessity of primitive knowledge predicates.
Perhaps it is the semantics of the knowledge operators that must be changed, and once this is done
correctly, the predicates will be reducible to the operators. We could redefine the assignment of
truth values to the knowledge operators so that, for example, Sgqq,@ is false at w if and only if it
is defined at w and false or undefined at some world accessible from w for Scott. This would
make Cjt and S;(Et) semantically equivalent. Unfortunately such a move would obliterate the dis-
tinction between Scott’s knowing that ¢ is true and his recognizing it as meaningful. This distinc-

tion is important to the evaluation of cryptographic protocols, the primary purpose for which this

logic was dcv1sed. For example, let us suppose that the security of a protocol we are evaluating
depends on the secrecy of Louie’s key k. The protocol should be secure enough if we can con-
clude that penetrator Scott does not know that k is Louie’s key. But, it is still more secure if Scott
does not even know that “k is Louie’s key.” is meaningful. At the very least there is a difference
between these two situations of how much additional information the penetrator must obtain to

render the protocol insecure. Thus, from a semantic point of view, the knowledge predicates are
both useful and noneliminable.

THE LOGIC

It should be clear from the language set out above that the logic we are about to present
will be a quantified modal logic. These are notoriously difficult semantically. In addition to the
problems associated with modality per se there are a number of problems associated with the in-

6. Alethic modalities are the modalities of necessity and possibility.

7
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teraction of modality and quantification.” We intend to skirt as many of the issues as we can that
do not bear directly on the subject of this report. For instance, we have chosen the logic T as the
basic epistemic logic because we have no need to represent iterated propositional knowledge.
However, this should not be viewed as a commitment to a position on introspection. In applica-
tions where such needs might arise I would be perfectly willing to use other logics, such as §4 or
§5, if this did not create any problems. (We will see below that we must reject both the Barcan

¢ CF 3¢ lreadv ruled out)y
Formula and its converse, thus S5 is a ady ruca oul.)

‘Standard” Axioms and Rules

Axioms 1 through 5 are the universal closures of the following, where there are no freety
occurring constant terms in ¢, 3, or v.

1.a->Pf-o

2. a=Boyv-o@oPoa—y
3 AB-—~ > (P-a—-P

4. S;aAS =B -5/

5. Sa—-a

By o tem mmnlra oiven thhne dhax

The reason for the restrictions on axioms 1 Li'huuy,u 5 is to make sure that tiey are true in
all models. Without the restrictions, an axiorn would not have a defined truth value at a world if it
contained a term that failed to denote there, While the idea of axioms that are not necessarily true
at all worlds is somewhat bizarre, there is no harm in it; however, for convenience and to avoid
unnecessary confusion, we adopt the above restrictions.

6. Yx(x=x)
7. VxVylx=y—.0—¢)

{where ¢’ is the result of placing no, some, or all occurrences of ‘X’ in ¢ with °y’, and where
neither ¢ nor ¢’ contain any free occurrences of any constant terms)

There are also two rules of inference:
Rl. From@ and ¢ — vy infer w (Modus Ponens)
R2. Fromtoinfert S i=1,..,n {(Episternic Generalization)

¢ and y may be either open or closed in modus ponens but not in epistemic generalization,
(The reason for the restriction to closed sentences in this case is explained betow.) Even these ba-
sic axioms and rules are problematic. The axioms together with R2 yield the omniscience prob-
lem; each subject knows all logical truths. Various attemnpts have been made 1o solve this and
other related problems by restricting the logic in one way or another (Eberie 1974; Fagin and

7. For an analysis of some of the major issues c.f. (Garson 1984).



NRL REPORT 9305

Halpern 1985; Levesque 1983). Other research has been done on non-monotonic doxastic logic
for computer security in which posited beliefs may be taken back (Moser 1989). Still others have
analyzed complexity issues in reasoning about knowledge and belief (Goldwasser et al. 1985;
Halpern and Vardi 1986). The difficulties these papers deal with are serious problems and not just
for the correct theoretical representation of reasoning. From a practical standpoint, in computer
security we don’t want to waste time worrying about inferences that no penetrator will ever actu-
ally draw. We also don’t want to be overly confident about what we ourselves can discern about a
penetrator.

Despite these problems, logics that model reasoning without restrictions of complexity
have been quite useful in uncovering important properties of distributed systems and of crypto-
graphic protocols. And, there is invariably a trade-off between the accuracy gained by less ideal-
ized analyses and the ease and speed with which such analyses are done. This trade-off is all the
more pronounced if the idealized system has associated semantic techniques available. So, while
we acknowledge this problem, we do not attempt to deal with it here.

Because of the omniscience problem, it is perhaps wrong or at least misleading to interpret

the S;’s and C;’s epistemically. We have done so partly to maintain terminological consistency
" with previous work and partly because that work is not so far off. Jon Barwise has said that “in-
formation travels at the speed of logic, genuine knowledge travels only at the speed of cognition
and inference,” and that “much of the work in the logic of knowledge is best understood in terms
of the logic of information.” (Barwise 1989, p. 204) I am entirely in agreement with these senti-
ments. Consequently, S;¢ is probably more accurately understood as saying that i has information
that ¢. Similarly, C;x is probably best understood as saying that i has sufficient information to

recognize x or to produce it. Despite these points, we will retain the terminology we started with
for the remainder of the report.

Rules for Quantification and for Relating Types of Knowledge

The basic quantifier rules are what distinguish this as a free logic—as opposed to a classi-
cal one. The rules were introduced above, and we restate them here as official rules of the logic.
3Ix is defined as —Vx— as usual.

R3. (Universal Instantiation)

From Vx ¢ A Et for any term t, where @ is a sentence in the language, and
infer @[t/x] @[t/x] is the same sentence as @ except that all free
occurrences of x in ¢ are replaced by t

R4. (Universal Generalization)

From y — (Et — o) where t is a term that does not occur freely in v or in
infer y — Vx @[x/t] any assumption on which y — (Et - ¢) depends

Next we give the primary rule for relating the two types of knowledge.

R5. (Knowledge Relation)

From S;¢ infer C;t where @ is an arbitrary sentence and t is any term occurring
freely in @
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As an example, suppose Ed knows that s = (11, ..., t5). Then, Ed can recognize all the ar-
guments and the value of the function. It may seem to follow from this rule that all the subijects
know all the words. By epistemic generalization, all subjects know all logical truths. And since
t =t is a logical truth, it would seem to follow from epistemic generalization and knowledge rela-
tion that all subjects know t. This appears to be disastrous since it means in particular that all sub-
jects know all passwords and keys. One might argue that this is not a problem since no dangerous
knowledge about keys and passwords derives from this. But we need not consider that because
the derivation is flawed anyway. The rule of epistemic generalization says that if p is a theorem,
then S;p is a theoremn. But t =t is not a theorem. ¥x (x =x) is a theorem {in fact an axiom}, but
t = t only follows from this provided that we also have Et. We must be careful to distinguish be-
tween Vx S;(o(x)) and Si(Vx ¢(x)}.

Given the above discussion, it should be clear that we must reject the converse of the Bar-
can Formula (CBF), i.e., the conditional $;(Vx ¢(x)) — Vx Sj(@(x)). We must reject the Barcan
Formula (BF) as well. Here is an example that illustrates why we must do so. Suppose that Ed
knows all the words. Furthermore, suppose that for each word that he knows, he knows that he
knows it. Then ¥x Sg4(Cggx) is true. It does not intuitively follow from this, however, that he
knows that he knows all the words. For example, suppose that all words are passwords and that
Ed has found all of them by searching in some way. This does not mean that he necessarily knows
that he has now found them all and can stop searching. In other words Sga(¥x Cgyx) does not in-
tuitively follow from Vx Sgq(Cgax). Thus both BF and CBF must be rejected in our system.
Since unrestricted epistemic generalization leads to CBF we reject it in favor of the restricted ver-
sion. And, the system also supports the reasoning in the above example; Vx Sgg(Cggx) is true at
w if Ed knows all the words at w, but for Sgg(vx Cggx) to be true at w, Ed would have to know ali
the words at all worlds accessible from w for him. Once we have shown soundness, the failure of
BF follows.

Cryptographic Axioms

Before stating the cryptographic axioms, it will be useful to have a definition for the no-

tion of an inverse key. This definition is completely eliminable and is made only for ease of nota-
tion and comprehension.
Definition of a (Two Sided) Key Inverse

vx, v [ Ix, y) o Yz (dly, e(x, z)) = z = e(x, d(y, z)})]
We are now in a position to state the two cryptographic axioms.

Secrecy Axiom
8.1.Vx,y,z,u [ I(x, u) A Cju A y = elx, z) A 8;(Txy, xa (¥ = e(xy, o)1) — C;zl]

Authenticity Axiom
8.2.Vx, v,z u[I{x, u) A Ciu Ay = d(x, z) A 8;(3xq, x5 (y = d(x;, x9))) — Cz]

Obviously these axioms are intended to apply to an asymmetric (public key) eryptosys-
tem. They apply equally well to a symmetric cryptosystem. In this case we simply have the add-

10



NRL REPORT 9305

ed information that x = u, and we can drop the leftmost conjunct in the antecedent since it is
always true.

The last conjunct in the antecedent of each axiom may seem unnecessary, especially since
reasoners in this system are fairly idealized. Can we not just assume that, if i knows x and y, he
will try to plug them into every formula at his disposal and see what results? Perhaps. But, even
in this case it is clearer to be explicit about our idealized assumptions. Thus, if we wish to assume
that i can always figure out that y is an encrypted word (when it is indeed an encrypted word),
then we should do so explicitly. We should then assume the last conjunct as a premise rather than
deleting it from the axiom.

METALOGIC

With our logic fully set out we can now begin our metalogical analysis. Actually we have

alrand ard 3 a analucie vnﬂ-h anr nhearvatinng r.\knnf fhss Dnrr‘nn pnﬂn‘n]n nnﬂ 11':: con-
arcaQy Engaged n some allarysis il Ourl CoSCIvaillns avo T

verse. The first result we derive is the soundness of the logic. For the remainder of the report we
adopt the following standard notational conventions. Let I" stand for a finite set of sentences and
@, V, etc. stand for arbitrary sentences as before. ‘I” - ¢’ means that ¢ is derivable using the in-
ference rules from I" and the axioms. As usual, we follow the convention of writing ‘¢’ for
‘T' @’ when T consists solely of theorems. ‘T" =¢’ means that, in all models, ¢ is true at all
worlds where all the members of I are true.

Soundness
Theorem: fI' ¢, then ' =@
To prove this we need the following lemma.

Lemma: All axioms are valid in all models provided that all freely occurring terms denote.

We assume that the lemma holds for axioms 1 through 5 since the proof is but a minor
variation on the standard soundness result for T. (c.f. Hughes & Cresswell 1968 or Chellas 1980)
Also, the result is trivial for the identity axioms, 6 and 7. So, all that remains is to prove the lem-
ma for the cryptographic axioms, 8.1 and 8.2. Since the cases are very similar, we prove only
that the secrecy axiom is valid in all models. First, note that the axiom cannot be undefined since
1t contains no free variables. If at some world w we insantiate X, y, z, uto ty, tp, t3 and t4 respec-
tively, the resultmg sentence 15 I(ty, t4) A Citg A ta = el t13) A S,(Bxl, Xg (ty = e(xl, xg))) - C1t3,
where a(l.l;, veny cu\l.4; 1S df‘w; Assume that the mucucdcm is rue at w. l.HI:ll, L4 € |_l.1 j, dIlu, at each
world W’ accessible for i from w there exist some s;, s such that ay(e(s;, sp)) = a(ty) =
a(e(ty, t3)). These conditions are sufficient to guaranice that t3 denotes at each such w’. Thus,

Cit is true at w. So, the whole conditional is true at w, and, by universal generalization, 8.1 is
Tue.

We now proceed to prove the theorem by showing that all the ways that ¢ can follow from
I" in a proof are ways that preserve validity.

11
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Case i: ¢isan axiomor member of I'. Then I’ E @ urivially.

Case ii: ¢ 1s obtained by modus ponens from y and w — ¢. We proceed by strong induction.

CSunnnce that cnnndnece hnldce far all linee nf a Aerivatinn yin tn e Thean hy indnetive humatha_
uuyyuuw PLIRRL WIS ALANALIWATYY SARFANE T L7 Eldi ERE3WAT WVPE O£ %AWl s Y LLLAVFRE ut} s \Fv B ¥ U} ALLILELANALL ¥ A ll} PULIJU

sis, "= wand I = w — ¢. So, clearly I' &= ¢ by the definition of the assignment function.

Case iii: @ is obtained by epistemic generalization. Then o is S;y for some y. Proceeding again
by induction, we have I = . Since it must be the case that v, by inductive hypothesis = y.
So w is true in all worlds, hence true in all worlds accessible for i from any given world, i.e.,
= S;y. Thus, a fortiori T = S;y.

Case iv: ¢ is obtained by universal instantiation. Then, ¢ is of the form W{t/x]. Proceeding by in-

duction weassume I E Yxw A Bt So. TVEVYrxwand I & Bt If ¥ doeg not occur freelv in wr
auchon, weassume 1 E VX W A BL 5o, 1 EVXxWandl F Bt I x does not occur freely 1in vy,

then Vxy is true iff Y is troe, and W isy[t/x] in this case. SoT = wit/x]. If x does occur freely
in y, then I' &= y{t/x] by the definition of the assignment function.

Case v: ¢ is obtained by universal generalization. So ¢ is of the form y — Vx 0[x/t], and, by in-
ductive hypothesis, I =y — Et — 8 where t is an arbitrary term not occurring freely in yor
any member of I'. We may assume I' = y. (If v is false the result is trivial. And, if ¥ is unde-
fined, by inductive hypothesis all of T is undefined and again the result is trivial.) So, by defi-
nition of the assignment function, I' =y — Vx 8{x/t].

Case vi: @ is obtained by RS, knowledge relation. This rule can be seen to be valid simply by in-
specting the assignment function.

QED

Completeness

Theorem: If I =¢, then T' .

We give a Henkin style proof for the completeness of the logic. That 1s, we construct a
model where the worlds are maximal consistent sets of sentences and show that every consistent
set is satisfiable, (It isa well known result that this is equivalent to completeness. For those unfa-
miliar with this, here is a very brief explanation. Restricting ourselves to the maximal consistent
sets containing I, if T' W {@} is valid in a set of worlds, then I\ {— ¢} is not simultaneously sat-
isfiable in any member of that set. Assuming I itself is consistent, if ' {— @] is inconsistent, it
can only be because I' +¢. Thus, if we can prove that the inconsistency of I' U {— ¢} follows
from its failure to be simultaneously satisfiable, we will have shown completeness. We do this by
proving the conrapositive—i.e., that every consistent set is satisfiable.)

We now take an arbitrary consistent set of sentences and show that it is satishable. As-
sume that we have a set of sentences [ that is consistent with respect to the logic. By Linden-
baum’s Lemma, this can be extended to a maximal consistent set v in some language L.
Unfortunately, the basic Lindenbaum method does not guarantee guite enough. In order to prove
what we want we must construct our maximal consistent sets so that the following condition is
satisfied.

-completeness: If w — Et — ¢ for every term t of L, then w - Vx ofxA].

12
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Note that this is equivalent to:

If ww {— Vx ¢} is consistent, then for some term t of L, w W {—= (Et — @[t/x])} is consistent.

We say that an w-complete, maximal consistent set of sentences of L is saturated (for L).
To produce a saturated set, we proceed by Lindenbauming and show that our construction satisfies
the equivalent formulation of m-completeness. Begin with a consistent set I', with all sentences
written in L. Order all sentences of L, {A, A,, ...}. Then, define a series of sets Mg =T, M;,
My, ... by letting Mj, 1 = M; U {Aj,1]} if doing so leaves M, consistent. Otherwise M;,; = M;.
The union of the M;’s is maximally consistent by Lindenbaum’s Lemma. To ensure w-complete-
ness we modify the construction slightly. If A;, 1 is — Vx ¢ and M; U {A;1} is consistent, then
we let My = Mj U (A1, — (Et — ¢[1/x])} where tis a term foreign to M; U {A;,1}. We claim
that M;,; 1s consistent if M; W (A1} is consistent. If not, then it must be the case that
M; U {Aj1} FEt — @[t/x]. Since t does not occur in M; U {A;, ]}, we can apply universal gen-
eralization to this in order to get that M; U {A;1} - Vx ¢©. Butthen M; U {A;,} is inconsistent.
Contradiction. This construction preserves consistency and guarantees both maximality and w-
completeness.

We now proceed to the construction of the standard model. Again, starting with a consis-
tent set I" of sentences of L, we extend this to a saturated set v by means of the above procedure.
Now, consider a language L* containing infinitely more terms than L. We define the standard
model <W, Ry, ..., Rg, D, d, 2> as follows. Let W be the set of all sets w of sentences satisfying
the following:

(1) Each world w is a saturated set for a language L., and L,, is a sublanguage of L*
such that there are infinitely many terms of L* not occurring in L,

2)veW.
(3) For all terms s and t which are members of both L, and Ly, s=tewiffs=tew’.
(4) If P(ty, ....ty) is an expression of both Ly, and Ly, P(ty, ....t,) € w iff P(ty, ...,t) e W’

Clauses (3) and (4) require agreement between worlds with regard to the membership of

certain sentences. Clause (2) is present simply to ensure that other worlds accommodate to v in
such agreement.

The assignment function for terms is given by a(t) = {s: s =t € LUW].

For an arbitrary n-ary predicate letter P the assignment function is given by
a(P) = (<ty, ..., 12> P(ty, oy tp) € W)L

Definition of the assignment function for other arguments is as above.

The domain is givenby D = wk.éw {a(®):teL,}, and thus d(w) = {a(t): teL

wl.

LR wnd

Foreachi, wRiw' iff Sipew = pew’.

13
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With the specification of the standard model finished we proceed to the main step in our
completeness proof, the truth lemma. Once the truth lemma is established we will have shown
completeness since we will have shown that I” (an arbitrary consistent set of sentences) is satisfied
by the standard model.

Truth Lemma: If ¢ is a sentence of Ly, then ay (o) =Tiff g ew.

Casei: ¢ isof the formy A 8,y v 8,y — 8, or . All of these follow by trivial inductive ar-
guments.

Caseii: ¢isof theforms=t. Hs=tew thensel, andteL,,. So,a(s} ed(w) and a(t) ed(w).
We need that a(s) = a(t). Suppose u €a(s). Then u=s e w’ for some w". Consider a language
L+ formed by adding u to L, (together with all resulting expressions). There exists a saturat-
ed set of sentences of L+, w' containing u = t. So, a(s) = a(t) and ay(s=0)=T ¥
a,(s = t) = T, then a(s), a{t} ed(w) and a(s) = a(t). Sos,t€L,. Since wis maximal consistent,
s=tewors#tew But if a{s) = a(t), there is some world in W containing s = t. Thus, by

rlaorieas (AN AfF the Aofnitinan AF W o = tew,

LIGUS () VL Ui u»xuuuuu WL OFY, o —

Case iii: ¢ is of the form Cit. If Cit ew, then, by maximal consistency, either Si{t=t)ew or
—Si{t=1) ew. We will see in case v below that if —S;(t = t) e w, then t# t e w’ for some W’
such that wR;w’, which is impossible. Thus, §;(t =) e w. Therefore, t =t ew’ for all w’ such
that wR;w’. So, a(t) ed(w") for all w’ such that wR;w’, and a (Ci) = T. If Cit ¢ w, then, by
knowledge relation and the maximal consistency of w, §;y ¢ w for any sentence \ containing
any free occurrences of t. In particular, S;{t =t) € w. And, as we have already mentioned, this
leads to a contradiction.

Caseiv: ¢ is of the form P(ty, ..., ty). If P(t;, ., t;) ew, then a(<ty, .., tp>) €a{P) and
alty), ..., afty) ed(w). But, a(<ty, .., t,>) €a(P) and alty), ..., alty) e d(w) iff ay (P, ..., 1)) =
T. If PQty, ..., ty) €w, then —P(ty, ..., t,) €w. Thus, by clause (4) of the definition of W,
al<ty, ... tp>) €a(P). So, 3 (P(t;, .., tx)) = T.

Casev: ¢ is of the form S;y. If S\ e w, then W e w’ for all w' such that wR;w", But, by induc-
tive hypothesis, y e w’ for all w” such that wR;w’ iff a,(y) = T for all such w'. Thus,
aw(Siy) = T. If Sjy ¢ w, then =Sy € w. We claim that if =S,y € w, then there is a w" e W such
that wR;w’ and — € w’. To show this assume that =S,y e wand let A = {@: S;pew} U {—w}.
It is easy to see that A is consistent and contains only terms of L. It is not clear that there are
infinitely many terms of L, foreign to A. Thus, it is not clear that A can be extended to a satu-
rated set of sentences for L,,. Let A be the set of terms occurring in L* but notin L, We can
use A to extend A to a saturated set, but that set will not be in W because it will not have infi-
nitely many terms of L* foreign to it. We solve this by partitioning A into two infinite sets A,
and A,. We then use A to extend A to a saturated set w’, and keep A, to ensure that there are
infinitely many terms of L* foreign to L,,». To establish the claim it remains only to show that
wR;w’, but this follows trivially from the composition of A. With the claim thus shown, it fol-
lows by inductive hypothesis, that if S;y e w, then a,{Sjyy = T.

Case vi: ¢ is of the form Vx y. By universal instantiation and w-completeness, Vx y ew is
equivalent to Y{t/x] ew for all t in L. But, by inductive hypothesis, this is equivalent to
afwitx) =T forall tin L. And, by the definition of 4, this is equivalent to a {y[t/x =T
for all t such that a(t) e d(w), which is equivalent to 2, (Vx Yy} =T.

OFED

g 2

I4
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Corollary: The deduction theorem fails to hold for this logic.

This becomes obvious when we look at our rule of universal instantiation. From
Vx @ A Et we can infer ¢[t/x]. However, from Vx ¢ we cannot infer Et — ¢[t/x], for if t fails to
denote, Et ~» ¢[t/x] will have an undefined truth value. So, for example, Vx (% = x} is an axiom
and thus true at all worlds. If the deduction theorem were to hold, then we could conclude from
universal instantiation and completeness that Et — t = t is true at all worlds. But, this is clearly
undefined at any world where t fails to denote. If we assume that all terms denote everywhere, we
can prove a fairly standard first order deduction theorem. However, such a restriction would re-
move most—if not all—of the interesting innovations of our logic. Basically, the absence of a de-
duction theorem means that the logic does not have enough expressive power to capture its own
consequence relation. While somewhat surprising there is no cause for concern, especially when
we realize that this limitation applies only in those cases where one literally does not know what
one is talking about. As mentioned above, ours is a logic of epistemic, not alethic, modalities.

In this report we have set out a logic and a formal semantics for that logic. We have sub-
jected the logic to metalogical analysis. In particular, we have proven its soundness and com-
pleteness. While these are interesting results in their own right, they are especially important for
logics that are to be applied to safety critical or security critical areas such as cryptographic proto-
cols. Soundness and completeness do not guarantee that there will be no error in evaluating the
security of a protocol. But, they do guarantee that there will be no formal error. Once we have
formally specified a protocol, a logical derivation of any result concerning the specification will
be correct—i.e. true of that specification~——and anything that can be formally shown to be a se-
mantic consequence of that specification will be provable in the logic. Of course, there is no guar-
antee that the specification is correct, but no logic can provide such a guarantee since this is not
part of the formal analysis. And, itis only in the formal analysis that logic can hope to play a role.

Finally, we note that, although the logic has been devised specifically as a logic for crypto-

graphic protocol analysis, its ability to represent knowledge in the sense of familiarity is clearly

armlinallae 10 Athar nAantavie TWlasrr thio gmAd mtlaaw ccmimizn Lontiisas ~0 slea T2 el be Lo ooe 120
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and in which contexts, is an interesting area for further study.
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